4.7 Article

Amperometric carbon fiber nitrite microsensor for in situ biofilm monitoring

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 188, Issue -, Pages 1263-1269

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2013.08.058

Keywords

Biofilm; Carbon fiber; In situ monitoring; Microsensor; Nitrification; Nitrite

Funding

  1. United States Environmental Protection Agency, through its Office of Research and Development

Ask authors/readers for more resources

A highly selective needle type solid state amperometric nitrite microsensor based on direct nitrite oxidation on carbon fiber was developed using a simplified fabrication method. The microsensor's tip diameter was approximately 7 mu m (14 mu m spatial resolution). At an applied potential of +1.2 V vs. Ag/AgCl, the microsensor exhibited a linear nitrite response from 0 to 25 mg N L-1, a 0.02 mg N L-1(1.3 mu M) limit of detection, and a fast response (<5 s). There was minimal interference with less than 3% of electrode response changes from major chemicals of interest in drinking water and wastewater systems [oxygen, ammonium, monochloramine, nitrate, sodium bicarbonate (alkalinity), chloride, sulfate, and acetate]. Hydrogen ion (pH) affected nitrite measurement by shifting the baseline response, translating into an approximate change of 0.24 mg N L-1 nitrite per 1 pH unit change. Depending on the conditions (e. g., pH, alkalinity, nitrite concentration), pH may need to be taken into account during nitrite measurement. The developed carbon fiber nitrite microsensor successfully measured nitrite in a nitrifying biofilm and is applicable for in situ analysis in other micro-environments (e. g., microbial mats and sediments). Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available