4.7 Article

Low temperature CO sensitive nanostructured WO3 thin films doped with Fe

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 162, Issue 1, Pages 14-21

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2011.11.038

Keywords

Tungsten oxide; Nanostructured thin films; Gas sensing; Doping; Thermal evaporation; CO sensor

Funding

  1. Queensland University of Technology

Ask authors/readers for more resources

Nanostructured tungsten oxide thin film based gas sensors have been developed by thermal evaporation method to detect CO at low operating temperatures. The influence of Fe-doping and annealing heat treatment on microstructural and gas sensing properties of these films have been investigated. Fe was incorporated in WO3 film by co-evaporation and annealing was performed at 400 degrees C for 2 h in air. AFM analysis revealed a grain size of about 10-15 nm in all the films. GIXRD analysis showed that as-deposited films are amorphous and annealing at 400 degrees C improved the crystallinity. Raman and XRD analysis indicated that Fe is incorporated in the WO3 matrix as a substitutional impurity, resulting in shorter O-W-O bonds and lattice cell parameters. Doping with Fe contributed significantly toward CO sensing performance of WO3 thin films. A good response to various concentrations (10-1000 ppm) of CO has been achieved with 400 degrees C annealed Fe-doped WO3 film at a low operating temperature of 150 degrees C. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available