4.7 Article

Impedimetric, diamond-based immmunosensor for the detection of C-reactive protein

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 157, Issue 1, Pages 130-138

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2011.03.037

Keywords

Cardiovascular diseases; C-reactive protein; Immunosensor; Impedance spectroscopy; Nanocrystalline diamond; Real-time detection

Funding

  1. Fund for Scientific Research (FWO [G.082909, G.0068.07]
  2. IWT
  3. transnational University Limburg tUL

Ask authors/readers for more resources

The high prevalence of cardiovascular diseases (CVD) demands a reliable and sensitive risk assessment technique. In order to develop a fast and label-free immunosensor for C-reactive protein (CRP), a risk factor for this condition, anti-CRP antibodies were physically adsorbed to the hydrogen (H)-terminated surface of nanocrystalline diamond (NCD). An Enzyme-Linked ImmunoSorbent Assay (ELISA) reference technique showed that this was a suitable substrate for antibody-antigen recognition reactions. Electrochemical Impedance Spectroscopy (EIS) was used to electronically detect CRP recognition. The specificity of the immunosensor was demonstrated by incubation with CRP and plasminogen as reference molecule. A different impedance behavior was observed in real-time after CRP addition as compared to plasminogen addition: the impedance increased only during CRP incubation. Fitting the data showed that this corresponded with a decrease in capacitance of the molecular layer due to its increased thickness by specific CRP recognition. Sensitivity experiments in real-time showed a clear discrimination between 1 mu M,100 nM, and 10 nM of CRP after 10 min at 100 Hz. Since, 10 nM of CRP was still clearly distinguishable from buffer solution, our CRP-directed immunosensor prototype reaches a sensitivity that is within the physiologically relevant concentration range of this biomarker in healthy controls and CVD patients. Moreover, this prototype displayed real-time discriminating power between spiked and unspiked serum, and thus also shows its applicability in this biological matrix. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available