4.7 Article

On data analysis in PTR-TOF-MS: From raw spectra to data mining

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 155, Issue 1, Pages 183-190

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2010.11.044

Keywords

Proton transfer reaction-mass spectrometry; Time of flight; Data analysis; Data mining; Volatile organic compounds

Funding

  1. ANPCyT [PICT 643]
  2. Autonomous Province of Trento

Ask authors/readers for more resources

Recently the coupling of proton transfer reaction ionization with a time-of-flight mass analyser (PTR-TOF-MS) has been proposed to realise a volatile organic compound (VOC) detector that overcomes the limitations in terms of time and mass resolution of the previous instrument based on a quadrupole mass analysers (PTR-Quad-MS). This opens new horizons for research and allows for new applications in fields where the rapid and sensitive monitoring and quantification of volatile organic compounds (VOCs) is crucial as, for instance, environmental sciences, food sciences and medicine. In particular, if coupled with appropriate data mining methods, it can provide a fast MS-nose system with rich analytical information. The main, perhaps even the only, drawback of this new technique in comparison to its precursor is related to the increased size and complexity of the data sets obtained. It appears that this is the main limitation to its full use and widespread application. Here we present and discuss a complete computer-based strategy for the data analysis of FTR-TOF-MS data from basic mass spectra handling, to the application of up-to date data mining methods. As a case study we apply the whole procedure to the classification of apple cultivars and clones, which was based on the distinctive profiles of volatile organic compound emissions. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available