4.7 Article Proceedings Paper

Molecularly imprinted β-cyclodextrin polymer as potential optical receptor for the detection of organic compound

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 139, Issue 1, Pages 156-165

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2008.10.035

Keywords

Molecularly imprinted polymer; beta-Cyclodextrin; N-Phenyl-1-naphthylarnme; Optical sensor; Fluorometry; Binding isotherms

Ask authors/readers for more resources

A molecularly imprinted beta-cyclodextrin polymer (MI beta-CDP) was synthesised using beta-cycloclextrin (beta-CD) as monomer that is cross-linked using toluene 2,4-diisocyanate (TDI); N-phenyl-1-naphthylamine (NPN) Was used as the template molecule. The MI beta-CDP was fluorometrically characterised using a fibre optic cable attached to a self-designed flow-cell. The fluorescence emission spectrum of the MI beta-CDP was found to be associated with the activity of binding to NPN through batch rebinding analysis. Hererogeneous binding models (bi-Langmuir and Freundlich isotherms) that yield information on binding sites affinity distribution and heterogeneity index were employed to characterise this process. Analytical Studies demonstrated that the fluorescence intensity was linear in the analyte concentration range up to 1.6 x 10(-4) M with a limit of detection (LOD) of 1.38 mu M. The non-linear response range was successfully modelled using a power relation that is similar to the Freundlich isotherm and the dynamic response was Successfully extended to 2.0 x 10(-3) M. The response time of the system was determined to be 90s with an Optimum flow of 0.02 mLs(-1) and methanol as analyte solvent. Molecular imprinting efficiently promoted a better sensing signal by increasing the binding-affinity and substrate-selectivity towards the template molecule, compared with the control polymer prepared in its absence. The sensitivity was enhanced by about 16% as measured with three different concentrations of analyte. The sensing receptor was successfully regenerated using acetonitrile and can be reused with no significant decay in intensity with a relative standard deviation (RSD) value of 2.24% (n = 13). The sensor developed was successfully tested for analytical determination of NPN. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available