4.7 Article

Magneto-piezoresistance in Magnetorheological elastomers for magnetic induction gradient or position sensors

Journal

SENSORS AND ACTUATORS A-PHYSICAL
Volume 205, Issue -, Pages 235-239

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2013.10.009

Keywords

Elasto-magnetic composite; Piezoresistivity; Magneto-resistivity; Magnetic field sensors; Displacement sensors

Funding

  1. AVANTI: Attenuatori di Vibrazioni Auto-attivi di Nuova TIpologia
  2. University of Naples

Ask authors/readers for more resources

Composite material constituted by Fe micro-particles homogeneously dispersed in a silicone matrix, at a volume concentration slightly above the percolation threshold but separated by a thin silicone layer, was produced. The particle magnetic softness and their average size, have been properly improved with respect to previous investigations in order to maximize the piezo-resistive and the piezo-magnetic effects. The optimal combination of magneto-elasticity and piezo-resistivity enables to achieve a record value of magneto-piezo-resistivity sensitivity. An analytical model is proposed to simulate the theoretically expected behavior of electric resistance vs. the applied induction field gradient, so to predict the magneto-piezoresistive response and explain the obtained material tailoring. The experimental results have been in good agreement with the theoretically predicted behaviors, so validating the employed model and the interpretation of the phenomenon. A simple basic application in position sensing is also reported. The analytical model presented in this paper has demonstrated its potentiality to project further improvements, while the experimental results allow for different innovative applications. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available