4.6 Article

Measurement of Atmospheric Dimethyl Sulfide with a Distributed Feedback Interband Cascade Laser

Journal

SENSORS
Volume 18, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/s18103216

Keywords

chemical sensor; mid-infrared dimethyl sulfide sensor; tunable laser absorption spectroscopy; distributed feedback interband cascade laser; spectral fitting; multi-species measurement; simultaneous measurement; empirical mode decomposition

Funding

  1. specially funded program on National Key Scientific Instruments and Equipment Development of China [2012YQ06016501]
  2. National Natural Science Foundation of China [61505142]

Ask authors/readers for more resources

This paper presents a mid-infrared dimethyl sulfide (CH3SCH3, DMS) sensor based on tunable laser absorption spectroscopy with a distributed feedback interband cascade laser to measure DMS in the atmosphere. Different from previous work, in which only DMS was tested and under pure nitrogen conditions, we measured DMS mixed by common air to establish the actual atmospheric measurement environment. Moreover, we used tunable laser absorption spectroscopy with spectral fitting to enable multi-species (i.e., DMS, CH4, and H2O) measurement simultaneously. Meanwhile, we used empirical mode decomposition and greatly reduced the interference of optical fringes and noise. The sensor performances were evaluated with atmospheric mixture in laboratory conditions. The sensor's measurement uncertainties of DMS, CH4, and H2O were as low as 80 ppb, 20 ppb, and 0.01% with an integration time 1 s, respectively. The sensor possessed a very low detection limit of 9.6 ppb with an integration time of 164 s for DMS, corresponding to an absorbance of 7.4 x 10(-6), which showed a good anti-interference ability and stable performance after optical interference removal. We demonstrated that the sensor can be used for DMS measurement, as well as multi-species atmospheric measurements of DMS, H2O, and CH4 simultaneously.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available