4.6 Article

Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter

Journal

SENSORS
Volume 18, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/s18092790

Keywords

air pollution; environmental monitoring; low cost sensors; particulate matter; relative humidity correction

Funding

  1. Alphasense Ltd.
  2. NERC [NE/I007490/1, NE/N007093/1] Funding Source: UKRI

Ask authors/readers for more resources

There is increasing concern about the health impacts of ambient Particulate Matter (PM) exposure. Traditional monitoring networks, because of their sparseness, cannot provide sufficient spatial-temporal measurements characteristic of ambient PM. Recent studies have shown portable low-cost devices (e.g., optical particle counters, OPCs) can help address this issue; however, their application under ambient conditions can be affected by high relative humidity (RH) conditions. Here, we show how, by exploiting the measured particle size distribution information rather than PM as has been suggested elsewhere, a correction can be derived which not only significantly improves sensor performance but which also retains fundamental information on particle composition. A particle size distribution-based correction algorithm, founded on kappa-Kohler theory, was developed to account for the influence of RH on sensor measurements. The application of the correction algorithm, which assumed physically reasonable kappa values, resulted in a significant improvement, with the overestimation of PM measurements reduced from a factor of similar to 5 before correction to 1.05 after correction. We conclude that a correction based on particle size distribution, rather than PM mass, is required to properly account for RH effects and enable low cost optical PM sensors to provide reliable ambient PM measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available