4.6 Article

Research on Transmission Line Voltage Measurement Method of D-Dot Sensor Based on Gaussian Integral

Journal

SENSORS
Volume 18, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/s18082455

Keywords

D-dot sensor; electric field inverse problem; transmission line voltage measurement; Gaussian integral

Funding

  1. National Natural Science Foundation of China [51677009]
  2. Chongqing Science and Technology Project [cstc2017jcyjAX0181]

Ask authors/readers for more resources

D-dot sensors meet the development trend towards the downsizing, automation and digitalization of voltage sensors and is one of research hotspots for new voltage sensors at present. The traditional voltage measurement system of D-dot sensors makes possible the reverse solving of wire potentials according to the computational principles of the electric field inverse problem by measuring electric field values beneath the transmission line. Nevertheless, as it is limited by the solving method of the electric field inverse problem, the D-dot sensor voltage measurement system is struggling with solving difficulties and poor accuracy. To solve these problems, this paper suggests introducing a Gaussian integral into the D-dot sensor voltage measurement system to accurately measure the voltage of transmission lines. Based on studies of D-dot sensors, a transmission line voltage measurement method based on Gaussian integrals is proposed and used for the simulation of the electric field of a 220 kV and a 20 kV transmission line. The feasibility of the introduction of the Gaussian integral to solve transmission line voltage was verified by the simulation results. Finally, the performance of the Gaussian integral was verified by an experiment using the transmission line voltage measurement platform. The experimental results demonstrated that the D-dot sensor measurement system based on a Gaussian integral achieves high accuracy and the relative error is lower than 0.5%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available