4.6 Article

Detecting Cannabis Use on the Human Skin Surface via an Electronic Nose System

Journal

SENSORS
Volume 14, Issue 7, Pages 13256-13272

Publisher

MDPI
DOI: 10.3390/s140713256

Keywords

electronic nose; principle component analysis (PCA); support vector machine (SVM); pattern recognition; human body odor

Funding

  1. JENASENSORIC e.V.
  2. Thuringian Ministry of Economy, Labor and Technology [TMBWAT/TAB 2009 FE9074, 2011 FE9092]
  3. European Regional Development Fund EFRE

Ask authors/readers for more resources

The most commonly used drug testing methods are based on the analysis of hair and urine using gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry or immunoassay screening. These methods are time-consuming and partly expensive. One alternative method could be the application of an electronic nose (eNose). We have developed an eNose to detect directly on the human skin surface metabolic changes in the human body odor caused by cannabis consumption. Twenty cannabis-smoking and 20 tobacco-smoking volunteers were enrolled in this study. For the sensor signal data processing, two different methods were applied: Principle component analysis (PCA) with discriminant analysis, and the method of pattern recognition with subsequent support vector machines (SVM) processing. The PCA analysis achieved a correct classification of 70%, whereas the SVM obtained an accuracy of 92.5% (sensitivity 95%, specificity 90%) between cannabis-consuming volunteers and tobacco-smoking subjects. This study shows evidence that a low-cost, portable and fast-working eNose system could be useful for health protection, security agencies and for forensic investigations. The ability to analyze human body odor with an eNose opens up a wide field for diagnosing other drugs and also various diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available