4.6 Article

The Potential Applications of Real-Time Monitoring of Water Quality in a Large Shallow Lake (Lake Taihu, China) Using a Chromophoric Dissolved Organic Matter Fluorescence Sensor

Journal

SENSORS
Volume 14, Issue 7, Pages 11580-11594

Publisher

MDPI
DOI: 10.3390/s140711580

Keywords

chromophoric dissolved organic matter; dissolved organic carbon; fluorescence; real-time monitoring; water quality parameters

Funding

  1. Major Projects on Control and Rectification of Water Body Pollution [2012ZX07101-010]
  2. National Natural Science Foundation of China [41325001, 41230744]
  3. Provincial Natural Science Foundation of Jiangsu, China [BK2012050]

Ask authors/readers for more resources

This study presents results from field surveys performed over various seasons in a large, eutrophic, shallow lake (Lake Taihu, China) using an in situ chromophoric dissolved organic matter (CDOM) fluorescence sensor as a surrogate for other water quality parameters. These measurements identified highly significant empirical relationships between CDOM concentration measured using the in situ fluorescence sensor and CDOM absorption, fluorescence, dissolved organic carbon (DOC), chemical oxygen demand (COD) and total phosphorus (TP) concentrations. CDOM concentration expressed in quinine sulfate equivalent units, was highly correlated with the CDOM absorption coefficient (r(2) = 0.80, p < 0.001), fluorescence intensities (Ex./Em. 370/460 nm) (r(2) = 0.91, p < 0.001), the fluorescence index (r(2) = 0.88, p < 0.001) and the humification index (r(2) = 0.78, p < 0.001), suggesting that CDOM concentration measured using the in situ fluorescence sensor could act as a substitute for the CDOM absorption coefficient and fluorescence measured in the laboratory. Similarly, CDOM concentration was highly correlated with DOC concentration (r(2) = 0.68, p < 0.001), indicating that in situ CDOM fluorescence sensor measurements could be a proxy for DOC concentration. In addition, significant positive correlations were found between laboratory CDOM absorption coefficients and COD (r(2) = 0.83, p < 0.001), TP (r(2) = 0.82, p < 0.001) concentrations, suggesting a potential further application for the real-time monitoring of water quality using an in situ CDOM fluorescence sensor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available