4.6 Article

Study of a Liquid Plug-Flow Thermal Cycling Technique Using a Temperature Gradient-Based Actuator

Journal

SENSORS
Volume 14, Issue 11, Pages 20235-20244

Publisher

MDPI
DOI: 10.3390/s141120235

Keywords

thermal cycling; DNA amplification; PCR; microfluidics

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [24710146]

Ask authors/readers for more resources

Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-flow thermal cycling utilizes a thermal gradient generated in a serpentine rectangular flow microchannel as an actuator. The transit time and flow speed of the plug flow varied drastically in each temperature zone due to the difference in the tension at the interface between temperature gradients. According to thermal distribution analyses in microfluidics, the plug flow allowed for a slow heating process, but a fast cooling process. The thermal cycle of the microfluid was consistent with the recommended temperature gradient for PCR. Indeed, amplification efficiency of the plug flow was superior to continuous flow PCR, and provided an impressive improvement over previously-reported flow microchannel thermal cycling techniques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available