4.2 Review

Diagnostic Imaging in COPD

Journal

Publisher

THIEME MEDICAL PUBL INC
DOI: 10.1055/s-0030-1254068

Keywords

Emphysema; COPD; imaging; computed tomography; airway disease

Funding

  1. NIH [HL089353-01A1, U01-HL089897, U01-HL08956]
  2. Parker B. Francis Foundation
  3. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [U01HL089856, K23HL089353, U01HL089897] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Chronic obstructive pulmonary disease (COPD) is a pathological pulmonary condition characterized by expiratory airflow obstruction due to emphysematous destruction of the lung parenchyma and small airways remodeling. Although spirometry is a very useful diagnostic tool for screening large groups of smokers, it cannot readily differentiate the etiologies of COPD and thus has limited utility in characterizing subjects for clinical and investigational purposes. There has been a longstanding interest in thoracic imaging and its role in the in vivo characterization of smoking-related lung disease. Research in this area has spanned readily available modalities such as chest -ray and computed tomography to more advanced imaging techniques such as optical coherence tomography (OCT) and magnetic resonance imaging (MRI). Although the chest x-ray is almost universally available, it lacks sensitivity in detecting both airway disease and mild emphysema and is not generally amenable to objective analysis. Computed tomography has become the standard modality to objectively visualize lung disease. It can provide useful measures of the presence and extent of emphysema, airway disease, and, more recently, pulmonary vascular disease for clinical correlation. It does, however, face limitations in standardization across brands and generations of scanners, and the ionizing radiation associated with image acquisition is of concern to both patients and health care providers. Newer techniques such as OCT and MRI offer exciting in vivo insights into lung structure and function that were previously available only in necropsy specimens and physiology laboratories. Given the more limited availability of these techniques, they will be viewed here as adjuncts to computed tomographic imaging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available