4.6 Review

Reprogramming non-mammary and cancer cells in the developing mouse mammary gland

Journal

SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY
Volume 23, Issue 5, Pages 591-598

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.semcdb.2012.03.007

Keywords

Transplantation; Microenvironment; Mammary; Development; Reprogramming

Funding

  1. Intramural NIH HHS [Z99 CA999999] Funding Source: Medline

Ask authors/readers for more resources

The capacity of any portion of the murine mammary gland to produce a complete functional mammary outgrowth upon transplantation to an epithelium-divested fat pad is unaffected by the age or reproductive history of the donor. Likewise, through serial transplantations, no loss of potency is detected when compared to similar transplantations of the youngest mammary tissue tested. This demonstrates that stem cell activity is maintained intact throughout the lifetime of the animal despite aging and the repeated expansion and depletion of the mammary epithelium through multiple rounds of pregnancy, lactation and involution. These facts support the contention that mammary stem cells reside in protected tissue locales (niches), where their reproductive potency remains essentially unchanged through life. Disruption of the tissue, to produce dispersed cells results in the desecration of the protection afforded by the niche and leads to a reduced capacity of dispersed epithelial cells (in terms of the number transplanted) to recapitulate complete functional mammary structures. Our studies demonstrate that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary cells, including mouse and human cancer cells, may be sequestered and reprogrammed to perform mammary epithelial cell functions including those ascribed to mammary stem/progenitor cells. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available