4.6 Review

I-BAR domains, IRSp53 and filopodium formation

Journal

SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY
Volume 21, Issue 4, Pages 350-356

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.semcdb.2009.11.008

Keywords

I-BAR; IRSp53; Cdc42; F-actin; Membrane protrusion; Filopodia

Funding

  1. A*STAR

Ask authors/readers for more resources

Filopodia and lamellipodia are dynamic actin-based structures that determine cell shape and migration. Filopodia are thought to sense the environment and direct processes such as axon guidance and neurite outgrowth. Cdc42 is a small GTP-binding protein and member of the RhoGTPase family. Cdc42 and its effector IRSp53 (insulin receptor phosphotyrosine 53 kDa substrate) have been shown to be strong inducers of filopodium formation. IRSp53 consists of an I-BAR (inverse-Bin-Amphiphysin-Rvs) domain, a Cdc42-binding domain and an SH3 domain. The I-BAR domain of IRSp53 induces membrane tubulation of vesicles and dynamic membrane protrusions lacking actin in cells. The IRSp53 SH3 domain interacts with proteins that regulate actin filament formation e. g. Mena, N-WASP, mDia1 and Eps8. In this review we suggest that the mechanism for Cdc42-driven filopodium formation involves coupling I-BAR domain-induced membrane protrusion with SH3 domain-mediated actin dynamics through IRSp53. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available