4.4 Article

Electrical, spectral and optical performance of yellow-green and amber micro-pixelated InGaN light-emitting diodes

Journal

SEMICONDUCTOR SCIENCE AND TECHNOLOGY
Volume 27, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0268-1242/27/1/015003

Keywords

-

Funding

  1. UK EPSRC 'HYPIX' [EP/F05999X/1]
  2. EPSRC [EP/K00042X/1, EP/I029141/1, EP/F05999X/1, EP/E006000/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/F05999X/1, EP/K00042X/1, EP/I029141/1, EP/E006000/1] Funding Source: researchfish

Ask authors/readers for more resources

Micro-pixelated InGaN LED arrays operating at 560 and 600 nm, respectively, are demonstrated for what the authors believe to be the first time. Such devices offer applications in areas including bioinstrumentation, visible light communications and optoelectronic tweezers. The devices reported are based on new epitaxial structures, retaining conventional (0 0 0 1) orientation, but incorporating electron reservoir layers which enhance the efficiency of radiative combination in the active regions. A measured output optical power density up to 8 W cm(-2) (4.4 W cm(-2)) has been achieved from a representative pixel of the yellow-green (amber) LED array, substantially higher than that from conventional broad-area reference LEDs fabricated from the same wafer material. Furthermore, these micro-LEDs can sustain a high current density, up to 4.5 kA cm(-2), before thermal rollover. A significant blueshift of the emission wavelength with increasing injection current is observed, however. This blueshift saturates at 45 nm (50 nm) for the yellow-green (amber) LED array, and numerical simulations have been used to gain insight into the responsible mechanisms in this microstructured format of device. In the relatively low-current-density regime (<3.5 kA cm(-2)) the blueshift is attributable to both the screening of the piezoelectric field by the injected carriers and the band-filling effect, whereas in the high-current regime, it is mainly due to band-filling. Further development of the epitaxial wafer material is expected to improve the current-dependent spectral stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available