4.6 Article

Exploring aberrant bivalve shell ultrastructure and geochemistry as proxies for past sea water acidification

Journal

SEDIMENTOLOGY
Volume 61, Issue 6, Pages 1625-1658

Publisher

WILEY
DOI: 10.1111/sed.12107

Keywords

Biomineralization; bivalves; diagenesis; isotope geochemistry; ocean acidification; proxy data; shell structure; stressed environment

Categories

Funding

  1. Federal Ministry of Education and Research (BMBF) [FKZ 03F0608H, 03F0608A]

Ask authors/readers for more resources

Throughout much of Earth's history, marine carbonates have represented one of the most important geological archives of environmental change. Several pivotal events during the Phanerozoic, such as mass extinctions or hyperthermal events have recently been associated with ocean acidification. Nevertheless, well-defined geological proxies for past ocean acidification events are, at best, scarce. Here, experimental work explores the response of bivalve shell ultrastructure and isotope geochemistry (C-13, O-18 and Mg-26) to stressful environments, in particular to sea water acidification. In this study, the common blue mussel, Mytilus edulis, was cultured (from early juvenile stages to one year of age) at four pH regimes (pH(NBS) 72 to pH 80). Shell growth rate and ultrastructure of mainly the calcitic portion of the shells were compared between experimental treatments. Specimens exposed to low-pH environments show patches of disordered calcitic fibre orientation in otherwise well-structured shells. Furthermore, the electron backscattered diffraction analyses reveal that, under acidified conditions, the c-axis of the calcite prisms exhibits a bimodal or multi-modal distribution pattern. Similar shell disorder patterns have been reported from mytilids kept under naturally acidified sea water conditions. In contrast, this study found no evidence that different pH regimes affect shell carbon, oxygen or magnesium isotope ratios. Based on these observations, it is proposed that: (i) stressful environments, in this case low sea water pH, predictably affect bivalve biomineralization patterns; and (ii) these findings bear potential as a novel (petrographic) proxy for ancient sea water acidification. An assessment of the applicability of these data to well-preserved fossil shell material from selected time intervals requires additional work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available