4.6 Review

Palaeoenvironmental implications of ferruginous deposits related to a Middle-Upper Jurassic discontinuity (Prebetic Zone, Betic Cordillera, Southern Spain)

Journal

SEDIMENTARY GEOLOGY
Volume 203, Issue 1-2, Pages 1-16

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.sedgeo.2007.10.001

Keywords

ferruginous coated grains; goethite; iron crust; plinthite; hydromorphic conditions; South-Iberian Palaeomargin

Categories

Ask authors/readers for more resources

The Middle-Upper Jurassic boundary in the westernmost Tethyan basins is marked by a discontinuity. A thin iron crust with ferruginous ooids and pisoids and an overlying ferruginous oolitic limestone lithofacies occur in a genetic relationship to this discontinuity with a reduced thickness (<50 cm) and very local distribution in the Prebetic Zone (Betic Cordillera). The ferruginous coated grains are subdivided into two types. Type A ooids are characterised by thin, regular lamination in concentric layers enclosing a nucleus; they are dominant in the top of the iron crust (100% of the ferruginous ooids) and in the ferruginous oolitic limestone (82%). Type B ooids typically have thick, irregular lamination in a few discontinuous concentric layers enclosing a variable nucleus including bioclasts and foraminifera; they are exclusive to the ferruginous oolitic limestone (18% of the ferruginous ooids). The bulk chemical composition varies between 80% Fe2O3 by weight in the iron crust and 67% by weight in the coated grains. In the ferruginous ooids, the contents in SiO2 (5.4%), Al2O3 (6.5%), P2O5 (3.6%), and CaO (4.7%) are higher than in the crust. Trace elements (V, Cr, Co, Ni, Zn, Y, Me, and Pb) in both the crust and ooids show enriched values compared with the bulk composition of the upper continental crust. The mineral composition of the iron crust and ooids is primarily goethite, with small amounts of Al-hydroxide (bohemite) and apatite, whereas hematite is identified only in the iron crust. The Type A ooids are interpreted as having an origin related to the iron crust. Since there is no evidence to support a marine genesis for the iron crust, the possibility of a subaerial origin is presented here. The crust has characteristics (chemical and mineralogical composition) similar to those of ferruginous pisolitic plinthite (highly weathered redoximorphic soil), and goethite shows an Al-substitution range (5-10 mol%) that indicates pedogenic conditions. Soil processes under periodic hydrous conditions are suggested; groundwater soils with hydrous conditions are congruent with the formation of the Type A ferruginous ooids and pisoids. In this situation, a coastal plain with periodically flooded soils would be the likeliest scenario. Callovian shallow carbonate shelf was possibly emerged and weathered, followed by marine sedimentation during the Middle Oxfordian, associated with major flooding of the Prebetic shelf and the erosion of ferruginous pisolitic plinthite. The first marine deposit was ferruginous oolitic limestones. Fragments of iron crust and Type A ferruginous ooids were reworked and incorporated into the marine sediments. A second phase of ferruginous ooids (Type B) with clear marine features developed, benefiting from iron-rich microenvironments due to the redistribution from iron crust fragments and Type A ferruginous ooids. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available