4.7 Article

Stimulation of ROS-scavenging systems in squash (Cucurbita pepo L.) plants by compost supplementation under normal and low temperature conditions

Journal

SCIENTIA HORTICULTURAE
Volume 130, Issue 4, Pages 862-868

Publisher

ELSEVIER
DOI: 10.1016/j.scienta.2011.08.015

Keywords

Low-temperature stress; Compost; Cucurbita pepo L.; Lipid peroxidation; ROS-scavenging anitioxidants

Categories

Funding

  1. Department of the Environmental Affairs
  2. Community Services, Suez Canal Univ. [127/2008]

Ask authors/readers for more resources

The beneficial effect of compost, the final product of aerobic biodegradation of organic matter, on growth, lipid peroxidation [as malondialdehyde (MDA], hydrogen peroxide (H2O2) and superoxide anion (O-2(center dot-)), activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), as well as reduced ascorbate (ASC) and glutathione (GSH) and their oxidized forms was investigated in squash (Cucurbita pepo L. cv. Eskandarany) plants exposed to normal and low temperature (LT) conditions. LT stress of 8 degrees C significantly reduced the plant growth of untreated plants, but compost alleviated the adverse effect of stress and significantly increased the fresh and dry weights under normal and stress conditions. LT also induced accumulation of H2O2 and O2(center dot-) and resulted in increased lipid peroxidation, pointing out to cellular oxidative stress. Under compost application, such reactive oxygen species (ROS) and peroxidized lipids were markedly reduced, but SOD, CAT, APX and GR activities, key enzymes of ROS-scavenging systems, were significantly increased. Data also indicated that there were general reductions in total ascorbate and glutathione pool in LT control plants, but compost-treated ones considerably have maintained higher levels of such redox metabolites. Significantly higher ratios of ASC/DHA (dehydroascorbate) and GSH/GSSG (glutathione disulfide) were generally found in compost-treated plants than in untreated-ones. It is evident that compost induced enhancement of LT tolerance was related to up-regulation of enzymatic and non-enzymatic antioxidant systems. Such enhancement would eventually protect plant cells from LT-induced oxidative stress reactions via scavenging ROS. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available