4.8 Article

A combination therapy for KRAS-driven lung adenocarcinomas using lipophilic bisphosphonates and rapamycin

Journal

SCIENCE TRANSLATIONAL MEDICINE
Volume 6, Issue 263, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scitranslmed.3010382

Keywords

-

Funding

  1. NIH (from the National Institute of Allergy and Infectious Diseases) [R01-AI048034]
  2. NIH (from the National Cancer Institute) [R01CA158191]
  3. Ipsen Biomeasure
  4. Frances C. Berger Foundation
  5. Leona M. and Harry B. Helmsley Charitable Trust [2012-PG-MED002]
  6. Harriet A. Harlin Professorship
  7. Tsinghua University
  8. U.S. DOE [DE-AC02-06CH11357]
  9. Michigan Technology Tri-Corridor [085P1000817]
  10. Tsinghua-Peking Center for Life Sciences

Ask authors/readers for more resources

Lung cancer is the most common human malignancy and leads to about one-third of all cancer-related deaths. Lung adenocarcinomas harboring KRAS mutations, in contrast to those with EGFR and EML4-ALK mutations, have not been successfully targeted. We describe a combination therapy for treating these malignancies with two agents: a lipophilic bisphosphonate and rapamycin. This drug combination is much more effective than either agent acting alone in the KRAS G12D-induced mouse lung model. Lipophilic bisphosphonates inhibit both farnesyl and geranylgeranyldiphosphate synthases, effectively blocking prenylation of KRAS and other small G proteins (heterotrimeric GTP-binding protein, heterotrimeric guanine nucleotide-binding proteins) critical for tumor growth and cell survival. Bisphosphonate treatment of cells initiated autophagy but was ultimately unsuccessful and led to p62 accumulation and concomitant nuclear factor kappa B (NF-kappa B) activation, resulting in dampened efficacy in vivo. However, we found that rapamycin, in addition to inhibiting the mammalian target of rapamycin (mTOR) pathway, facilitated autophagy and prevented p62 accumulation-induced NF-kappa B activation and tumor cell proliferation. Overall, these results suggest that using lipophilic bisphosphonates in combination with rapamycin may provide an effective strategy for targeting lung adenocarcinomas harboring KRAS mutations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available