4.7 Article

CD38-mediated Ca2+ signaling contributes to glucagon-induced hepatic gluconeogenesis

Journal

SCIENTIFIC REPORTS
Volume 5, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep10741

Keywords

-

Funding

  1. National Research Foundation - Korean government [2012R1A3A2026453]

Ask authors/readers for more resources

CD38 is a multifunctional enzyme for the synthesis of Ca2+ second messengers. Glucagon promotes hepatic glucose production through Ca2+ signaling in the fasting condition. In this study, we investigated the role of CD38 in the glucagon signaling of hepatocytes. Here, we show that glucagon induces cyclic ADP-ribose (cADPR) production and sustained Ca2+ increases via CD38 in hepatocytes. 8-Br-cADPR, an antagonistic cADPR analog, completely blocked glucagon-induced Ca2+ increases and phosphorylation of cAMP response element-binding protein (CREB). Moreover, glucagon-induced sustained Ca2+ signals and translocation of CREB-regulated transcription coactivator 2 to the nucleus were absent and glucagon-induced glucose production and expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (Pck1) are remarkably reduced in hepatocytes from CD38(-/-) mice. Furthermore, in the fasting condition, CD38(-/-) mice have decreased blood glucose and hepatic expression of G6Pase and Pck1 compared to wild type mice. Our data suggest that CD38/cADPR-mediated Ca2+ signals play a key role in glucagon-induced gluconeogenesis in hepatocytes, and that the signal pathway has significant clinical implications in metabolic diseases, including type 2 diabetes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available