4.5 Article

Yeast Osmosensors Hkr1 and Msb2 Activate the Hog1 MAPK Cascade by Different Mechanisms

Journal

SCIENCE SIGNALING
Volume 7, Issue 314, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scisignal.2004780

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
  2. Salt Science Research Foundation [1218]
  3. MEXT
  4. Grants-in-Aid for Scientific Research [25440042] Funding Source: KAKEN

Ask authors/readers for more resources

To cope with environmental high osmolarity, the budding yeast Saccharomyces cerevisiae activates the mitogen-activated protein kinase (MAPK) Hog1, which controls an array of osmoadaptive responses. Two independent, but functionally redundant, osmosensing systems involving the transmembrane sensor histidine kinase Sln1 or the tetraspanning membrane protein Sho1 stimulate the Hog1 MAPK cascade. Furthermore, the Sho1 signaling branch itself also involves the two functionally redundant osmosensors Hkr1 and Msb2. However, any single osmosensor (Sln1, Hkr1, or Msb2) is sufficient for osmoadaptation. We found that the signaling mechanism by which Hkr1 or Msb2 stimulated the Hog1 cascade was specific to each osmosensor. Specifically, activation of Hog1 by Msb2 required the scaffold protein Bem1 and the actin cytoskeleton. Bem1 bound to the cytoplasmic domain of Msb2 and thus recruited the kinases Ste20 and Cla4 to the membrane where either of them can activate the kinase Ste11. The cytoplasmic domain of Hkr1 also contributed to the activation of Ste11 by Ste20, but through a mechanism that involved neither Bem1 nor the actin cytoskeleton. Furthermore, we found a PXXP motif in Ste20 that specifically bound to the Sho1 SH3 (Src homology 3) domain. This interaction between Ste20 and Sho1 contributed to the activation of Hog1 by Hkr1, but not by Msb2. These differences between Hkr1 and Msb2 may enable differential regulation of these two proteins and provide a mechanism through Msb2 to connect regulation of the cytoskeleton with the response to osmotic stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available