4.5 Article

SIK1 Couples LKB1 to p53-Dependent Anoikis and Suppresses Metastasis

Journal

SCIENCE SIGNALING
Volume 2, Issue 80, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scisignal.2000369

Keywords

-

Funding

  1. NCI NIH HHS [R01 CA134502, P50 CA089393-09, R01 CA134502-02, BC051565, P50 CA089393] Funding Source: Medline
  2. PHS HHS [W81XWH-07-1-0408] Funding Source: Medline

Ask authors/readers for more resources

Resistance to anoikis, the subtype of apoptosis triggered by lack of adhesion, contributes to malignant transformation and the development of metastasis. Although several lines of evidence suggest that p53 plays a critical role in anoikis, the pathway(s) that connect cell detachment to p53 remain undefined. Here, through the use of a kinome-wide loss-of-function screen, we identify the serine-threonine kinase SIK1 (salt-inducible kinase 1) as a regulator of p53-dependent anoikis. Inactivation of SIK1 compromised p53 function in anoikis and allowed cells to grow in an anchorage-independent manner. In vivo, SIK1 loss facilitated metastatic spread and survival of disseminated cells as micrometastases in lungs. The presence of functional SIK1 was required for the activity of the kinase LKB1 in promoting p53-dependent anoikis and suppressing anchorage-independent growth, Matrigel invasion, and metastatic potential. In human cancers, decreased expression of the gene encoding SIK1 closely correlated with development of distal metastases in breast cancers from three independent cohorts. Together, these findings indicate that SIK1 links LKB1 to p53-dependent anoikis and suppresses metastasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available