4.7 Article

The microbial community responsible for dechlorination and benzene ring opening during anaerobic degradation of 2,4,6 trichlorophenol

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 651, Issue -, Pages 1368-1376

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2018.09.300

Keywords

Dechlorination; High-throughput sequencing; Trichlorophenol; Activated sludge; Benzene ring opening

Funding

  1. National Natural Science Foundation of China [21677100, 51208302]
  2. Opening Project of Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3) [FDLAP16006]

Ask authors/readers for more resources

This study describes the dechlorination ability of acclimated biomass, the high-throughput sequencing of the 16S ribosomal RNA (rRNA) gene of such microorganisms, and the analysis of their community structure in relation to special functions. Two types of acclimated biomass (AB-1 and AB-2) were obtained via different acclimated treatment processes and were used to degrade 2,4,6 trichlorophenol. The degradation pathway and characteristics of trichlorophenol degradation were different between the two groups. AB-1 degraded trichlorophenol only to 4-chlorophenol. AB-2 completely dechlorinated trichlorophenol and opened the benzene ring. The 16S rRNA high-throughput sequencing method was employed to examine the microbial diversity. It was found that the microbial richness and diversity of AB-1 were higher than those of AB-2. Firmicutes and Bacteroidetes were 2.7-fold and 4.3-fold more abundant, respectively, in AB-1 than in AB-2. Dechlorination bacteria in AB-1 mainly included Desulfobulbus, Desulfovibrio, Dechloromonas, and Geobacter. The above-mentioned bacteria were less abundant in AB-2, but the abundance of Desulfomicrobium was twofold higher in AB-2 than in AB-1. The two types of acclimated biomass contained different hydrogen (H-2)-producing bacteria. AB-2 showed higher abundance and diversity of hydrogen-producing bacteria. There was no Ignavibacteriae in AB-1, whereas its abundance in AB-2 was 8.4%. In this biomass, Ignavibacteriae was responsible for opening of the benzene ring. This study indicates that the abundance and diversity of microorganisms are not necessarily beneficial to the formation of a functional dechlorinating community. The H-2-producing bacteria (which showed greater abundance and diversity) and Ignavibacterium were assumed to be core functional populations that gave AB-2 stronger dechlorination and phenol-degradation abilities. Control of lower oxidation reduction potential (E-h) and higher temperatures by means of fresh aerobic activated sludge as the starting microbial group, caused rapid complete dechlorination of 2,4,6 trichlorophenol and benzene ring opening. (c) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available