4.7 Article

Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5

Journal

SCIENTIFIC REPORTS
Volume 5, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep13530

Keywords

-

Funding

  1. Japan Science Technology Agency (JST), PRESTO
  2. Japan Society for the Promotion of Science [23104713, 23241034, 25104712, 26107517]
  3. Ministry of Education, Culture, Sports, Science and Technology
  4. Grants-in-Aid for Scientific Research [15H02103, 26107517, 25104712, 15K13378] Funding Source: KAKEN

Ask authors/readers for more resources

Because of their robust switching capability, chalcogenide glass materials have been used for a wide range of applications, including optical storages devices. These phase transitions are achieved by laser irradiation via thermal processes. Recent studies have suggested the potential of nonthermal phase transitions in the chalcogenide glass material Ge2Sb2Te5 triggered by ultrashort optical pulses; however, a detailed understanding of the amorphization and damage mechanisms governed by nonthermal processes is still lacking. Here we performed ultrafast time-resolved electron diffraction and single-shot optical pump-probe measurements followed by femtosecond near-ultraviolet pulse irradiation to study the structural dynamics of polycrystalline Ge2Sb2Te5. The experimental results present a nonthermal crystal-to-amorphous phase transition of Ge2Sb2Te5 initiated by the displacements of Ge atoms. Above the fluence threshold, we found that the permanent amorphization caused by multi-displacement effects is accompanied by a partial hexagonal crystallization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available