4.7 Article

Transport of microbial tracers in clean and organically contaminated silica sand in laboratory columns compared with their transport in the field

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 443, Issue -, Pages 55-64

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2012.09.049

Keywords

Microbial transport; Sand; Aquifers; E. coli; Bacteriophage; Dissolved organic carbon (DOC)

Funding

  1. New Zealand Public Good Science Fund [CO3X0303]

Ask authors/readers for more resources

Waste disposal on land and the consequent transport of bacterial and viral pathogens in soils and aquifers are of major concern worldwide. Pathogen transport can be enhanced in the presence of organic matter due to occupation of attachment sites in the aquifer materials thus preventing pathogen attachment leading to their faster transport for longer distances. Laboratory column studies were carried out to investigate the effect of organic matter, in the form of dissolved organic carbon (DOC), on the transport of Escherichia coli and MS2 phage in saturated clean silica sand. Transport rates of these microbial tracers were also studied in a contaminated field site. Laboratory column studies showed that low concentrations (0.17 mg L-1) of DOC had little effect on E. coli J6-2 removal and slightly reduced the attachment of MS2 phage. After progressive conditioning of the column with DOC (1.7 mg L-1 and 17 mg L-1), neither E. coli J6-2 nor MS2 phage showed any attachment and recovery rates increased dramatically (up to 100%). The results suggest that DOC can affect the transport rates of microbial contaminants. For E. coli J6-2 the predominant effect appeared to be an increase in the secondary energy minimum leading to an increase in E. coli attachment initially. However, after 17 mg L-1 DOC conditioning of the silica sand no attachment of E. coli was observed as the DOC took up attachment sites in the porous media. MS2 phage appeared to be affected predominantly by out-competition of binding sites in the clean silica sand and a steady reduction in attachment was observed as the DOC conditioning increased. Field study showed a high removal of both E. coli and MS2 phage, although E. coli was removed at a lower rate than MS2 phage. In the field it is likely that a combination of effects are seen as the aquifer material will be heterogeneous in its surface nanoscale properties, demonstrated by the differing removal of E. coli and MS2 phage compared to the laboratory scale experiments. This research demonstrates the importance of combining laboratory scale and field scale studies to fully understand removal of microbes in groundwater aquifers affected by organic matter (DOC). (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available