4.7 Article

Combined impacts of freeze-thaw processes on paddy land and dry land in Northeast China

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 456, Issue -, Pages 24-33

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2013.03.059

Keywords

Soil water content; Freeze-thaw characteristics; Redistribution; Frozen agricultural soil

Funding

  1. National Natural Science Foundation of China [41001317, 40930740, 41271463]
  2. Supporting Program of the Twelfth Five-year Plan for Sci & Tech Research of China [2012BAD15B05]

Ask authors/readers for more resources

The The quantity of spring snowmelt infiltration and runoff, which affects the hydrology of the freeze zone, depends on the antecedent soil water content (SWC) conditions at the time of the soil's freezing. An understanding of the characteristics of frozen soil is essential for spring sowing in the agricultural freeze zones. The main goal of this study was to evaluate the differences in the freeze-thaw process and the freeze-thaw-induced water redistribution between the paddy and dry lands in a freeze zone. For this purpose, a field study was conducted in the 2011-2012 for tow types of farmlands in Northeast China. To illustrate the soil's frost dynamics over time, the measured SWCs at different depths (15, 30, 60, and 90 cm) were transformed into different expressions including the SWC dynamic, the frozen soil's profile, and the freezing and thawing front trace. The freezing characteristics in the paddy land, in contrast to that in the dry land, had a higher freezing point temperature, a larger amount of water movement to the supper layer, and a 2.76 mm larger accumulation of water in the upper layer. However, the increase of SWC (which is equivalent to thawing) was evidently faster than the decrease of SWC (which is equivalent to freezing). The water in the frozen soil's profile was most likely redistributed towards the freezing front before soil temperature (ST) falls below the freezing point. The findings may partially explain the soil's freeze-thaw characteristics for the different stages as well as the combined impact of these characteristics with farmland use types on soil hydrology; the findings may also provide a foundation for forecasting the hydrologic response of the freeze-thaw process and provide guidance for management strategies dealing with seasonally frozen agricultural soils. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available