4.7 Article

Dispersion and stability of bare hematite nanoparticles: Effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 419, Issue -, Pages 170-177

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2012.01.012

Keywords

Iron oxide nanoparticles (IONPs); Probe ultrasonication; Dispersion; IONPs' stability; Ionic strength; Humic acid

Funding

  1. NIH-NIEHS ARCH [S11ES11181]
  2. Florida International University

Ask authors/readers for more resources

The aggregation and sedimentation of iron oxide nanoparticles (IONPs) can significantly affect the mobility and reactivity of IONPs and subsequently influence the interaction between IONPs and environmental contaminants. Dispersing bare IONPs into a stable suspension within nanoscale range is an important step for studying the interaction of IONPs with contaminants (e.g., toxic metals). In this study, different techniques to disperse bare IONPs (vortex, bath sonication and probe ultrasonication) and the effects of important environmental factors such as dissolved organic matter and ionic strength on the stability of IONPs dispersions were investigated. Vortex minimally dispersed IONPs with hydrodynamic diameter outside the nano-size range (698-2400 nm). Similar to vortex, bath sonication could not disperse IONPs efficiently. Probe ultrasonication was more effective at dispersing IONPs (50% or more) with hydrodynamic diameters ranging from 120 to 140 nm with minimal changes in size and sedimentation of IONPs for a prolonged period of time. Over the course of 168 h, considerable amounts of IONPs remained dispersed in the presence and absence of low ionic strength (0.1 mM of NaCl) and 100 mg/L of humic acid (HA). These results indicate that IONPs can be broken down efficiently into nanosize range by probe ultrasonication and a degree of stability can be achieved without the use of synthetic modifiers to enhance colloidal stability. This dispersion tool could be used to develop a laboratory method to study the adsorption mechanism between dispersed bare IONPs and toxic contaminants. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available