4.7 Article

Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 438, Issue -, Pages 435-446

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2012.08.087

Keywords

Fluorescence; Parallel Factor Analysis; Seasonality; Redox state; Forest; Wetland

Funding

  1. German Federal Ministry of Education and Research [01SFF0710]
  2. German Academic Exchange Service
  3. la Caixa Foundation

Ask authors/readers for more resources

Dissolved organic matter (DOM) is an important part of the global carbon cycle and significantly influences aquatic ecosystem functions. Recent studies suggest that its amount and composition in freshwaters may be altered by agricultural land use, whereby the influence of preceding in-stream production and processing is not clear. To assess the land use effect on DOM amount and composition for the export from terrestrial to freshwater systems at the land-water interface, we sampled headwater streams draining agricultural and near-pristine catchments (forested and wetland) in the North German plains. To account for spatial and seasonal variation, we conducted a screening of DOM amount (53 sites) and composition (42 sites), and conducted bi-weekly samplings to investigate seasonal variation at eight sites over one year. Concentrations of dissolved organic carbon (DOC) were significantly higher for agricultural and wetland catchments than for forested catchments. Moreover, DOC loads exhibited higher seasonal variation for agricultural and wetland catchments than for forested catchments, which was due to higher variation in discharge. Parallel Factor Analysis revealed that the composition of DOM in agricultural catchments was significantly different from the other studied catchment types, and was characterized by low redox state and high structural complexity. Moreover, a gradient from protein- to humic-like fluorescence significantly separated forested from agricultural and wetland catchments. The contribution of humic-like DOM was strongly and positively related to DOC concentration, suggesting a mechanistic coupling of both. The effects of land use on patterns of DOC concentration and DOM composition were consistent across seasons, implying that land use strongly regulates DOM export. Overall, this study clearly shows the seasonally independent importance of agricultural land use for the amount and composition of DOM fluxes from the terrestrial zone to surface waters. These altered fluxes may affect ecosystem metabolism and health of agricultural headwaters and downstream situated aquatic ecosystems. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available