4.7 Article

Photochemical reactivity of perfluorooctanoic acid (PFOA) in conditions representing surface water

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 409, Issue 16, Pages 3043-3048

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2011.04.036

Keywords

Photodegradation; Indirect photolysis; Perfluorooctanoic acid (PFOA); Persistent organic pollutants; Photochemical half-life

Funding

  1. Helsinki University Centre for Environment (HENVI)

Ask authors/readers for more resources

Potential of perfluorooctanoic acid (PFOA) to degrade via indirect photolysis in aquatic solution under conditions representing surface water was studied. Globally distributed and bioaccumulative PFOA does not absorb solar radiation by itself, but may be potentially photochemically transformed by the natural sensitizers such as dissolved organic matter (DOM), nitrate or ferric iron. Reaction solutions containing purified water, fulvic acid ( representing DOM), nitrate, ferric iron or sea water from the Baltic Sea were spiked with PFOA and irradiated with an artificial sun (290-800 nm). In comparison similar samples were also irradiated under UV radiation at 254 nm in order to study the direct photolysis. UV radiation at 254 nm decomposed PFOA to perfluoroheptanoic-, perfluorohexanoic- and perfluoropentanoic acids. The samples irradiated with an artificial sun contained no decomposition products and no decrease in PFOA concentration was observed. According to the detection limit of the products and typical solar radiation at the surface of ocean, the photochemical half-life for PFOA was estimated to be at least 256 years at the depth of 0 m, >5000 years in the mixing layer of open ocean and >25,000 years in coastal ocean. This is significantly more than the previously reported photochemical half-life of PFOA (>0.96 years). (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available