4.7 Article

Pyrolysis and thermal-oxidation characterization of organic carbon and black carbon aerosols

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 409, Issue 20, Pages 4449-4455

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2011.07.016

Keywords

Black carbon aerosols; Organic carbon aerosols; Thermal oxidation method; Soot

Funding

  1. National Nature Sciences Funding of China [40875087]
  2. Department of Education of Fujian Province [XSJRC2007-03]

Ask authors/readers for more resources

In this study, the pyrolytic behaviors and the thermal-oxidation decomposition characteristics of organic carbon (OC), pyrolytically generated elemental carbon (PEC) and black carbon (BC) particles have been studied in inert and air atmosphere respectively, in order to develop a new PEC correction method for the determination of BC by using thermal oxidation method. Our results indicated that: 1) a part of OC can be removed by heating it at 400 degrees C in inert atmosphere and another part of OC was charred to form PEC, whereas, the weight of BC particles approximately keeps no change in the same conditions. 2) PEC and BC began to decompose at a similar temperature in air atmosphere. However, the decomposition rate of PEC is quite different from that of BC in air atmosphere and the difference varied with the temperature. As maximum, the decomposition rate of PEC is 5.64 times faster than that of BC particles at 500 degrees C in air atmosphere. Based on the difference of the decomposition rate between PEC and BC, a new method of PEC correction was developed for the thermal oxidation method. With the help of the new PEC correction method and thermal analyzer, we successfully determined OC and BC concentrations in actual soot sample and artificial soot samples. The results obtained with our PEC correction method are consistent well with the real value or those analyzed with thermal-optical method, suggesting that the novel PEC correction method have a high accuracy. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available