4.7 Article

Width-controlled M-type hexagonal strontium ferrite (SrFe12O19) nanoribbons with high saturation magnetization and superior coercivity synthesized by electrospinning

Journal

SCIENTIFIC REPORTS
Volume 5, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep15089

Keywords

-

Funding

  1. National Science Fund of China [51171075, 51371092]
  2. National Basic Program of China [2012CB933101]

Ask authors/readers for more resources

Width-controlled M-type hexagonal SrFe12O19 nanoribbons were synthesized for the first time via polyvinylpyrrolidone (PVP) sol assisted electrospinning followed by heat treatment in air, and their chemical composition, microstructure and magnetic performance were investigated. Results demonstrated that as-obtained SrFe12O19 nanoribbons were well-crystallized with high purity. Each nanoribbon was self-assembled by abundant single-domain SrFe12O19 nanoparticles and was consecutive on structure and uniform on width. PVP in the spinning solution played a significant influence on the microstructure features of SrFe12O19 nanoribbons. With PVP concentration increasing, the ribbon-width was increased but the particle-size was reduced, which distributed on a same ribbon were more intensive, and then the ribbon-surface became flat. The room temperature magnetic performance investigation revealed that considerable large saturation magnetization (M-s) and coercivity (H-c) were obtained for all SrFe12O19 nanoribbons, and they increased with the ribbon-width broadening. The highest Ms of 67.9 emu.g(-1) and H-c of 7.31 kOe were concurrently acquired for SrFe12O19 nanoribbons with the maximum ribbon-width. Finally, the Stoner-Wohlfarth curling model was suggested to dominate the magnetization reverse of SrFe12O19 nanoribbons. It is deeply expected that this work is capable of opening up a new insights into the architectural design of 1D magnetic materials and their further utilization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available