4.7 Article

Parameter optimization of the QUAL2K model for a multiple-reach river using an influence coefficient algorithm

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 408, Issue 8, Pages 1985-1991

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2010.01.025

Keywords

Influence coefficient algorithm; Genetic algorithm; Automatic calibration; QUAL2K; QUAL2Kw; Parameter optimization

Funding

  1. Korea Research Foundation, Korean Government [KRF-2007-521-D00265]

Ask authors/readers for more resources

An influence coefficient algorithm and a genetic algorithm (GA) were introduced to develop an automatic calibration model for QUAL2K, the latest version of the QUAL2E river and stream water-quality model. The influence coefficient algorithm was used for the parameter optimization in unsteady state, open channel flow. The GA. used in solving the optimization problem, is very simple and comprehensible yet still applicable to any complicated mathematical problem, where it can find the global-optimum solution quickly and effectively. The previously established model QUAL2Kw was used for the automatic calibration of the QUAL2K. The parameter-optimization method using the influence coefficient and genetic algorithm (POMIG) developed in this study and QUAL2Kw were each applied to the Gangneung Namdaecheon River, which has multiple reaches, and the results of the two models were compared. In the modeling, the river reach was divided into two parts based on considerations of the water quality and hydraulic characteristics. The calibration results by POMIG showed a good correspondence between the calculated and observed values for most of water-quality variables. In the application of POMIG and QUAL2Kw, relatively large errors were generated between the observed and predicted values in the case of the dissolved oxygen (DO) and chlorophyll-a (Chl-a) in the lowest part of the river; therefore, two weighting factors (1 and 5) were applied for DO and Chl-a in the lower river. The sums of the errors for DO and Chl-a with a weighting factor of 5 were slightly lower compared with the application of a factor of 1. However, with a weighting factor of 5 the sums of errors for other water-quality variables were slightly increased in comparison to the case with a factor of 1. Generally, the results of the POMIG were slightly better than those of the QUAL2Kw. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available