4.7 Article

Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 393, Issue 2-3, Pages 226-240

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2007.12.030

Keywords

PM10; particles; tyres; traction material; road simulator; cell study; road wear; traffic emission

Ask authors/readers for more resources

in regions where studded tyres and traction material are used during winter, e.g. the Nordic countries, northern. part of USA, Canada, and Japan, mechanically generated particles from traffic are the main reason for high particle mass concentrations in busy street and road environments. in many Nordic municipalities the European environmental quality standard for inhalable particles (PM10) is exceeded due to these particles. In this study, particles from the wear of studded and studless friction lyres on two pavements and traction sanding were generated using a road simulator. The particles were characterized using particle sizers, Particle Induced X-Ray Emission Analysis and electron microscopy. Cell studies were conducted on particles sampled from the tests with studded tyres and compared with street environment, diesel exhaust and subway PM10, respectively. The results show that in the road simulator, where resuspension is minimized, studded tyres produce tens of times more particles than friction tyres. Chemical analysis of the sampled particles shows that the generated wear particles consist almost entirely of minerals from the pavement stone material, but also that Sulfur is enriched for the submicron particles and that Zink is enriched for friction tyres for all particles sizes. The chemical data can be used for source identification and apportionment in urban aerosol studies. A mode of ultra-fine particles was also present and is hypothesised to originate in the tyres. Further, traction material properties affect PM10 emission. The inflammatory potential of the particles from wear of pavements seems to depend on type of pavement and can be at least as potent as diesel exhaust particles. The results imply that there is a need and a good potential to reduce particle emission from pavement wear and winter time road and street operation by adjusting both studded tyre use as well as pavement and traction material properties. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available