4.7 Article Proceedings Paper

Gully hotspot contribution to landscape methane (CH4) and carbon dioxide (CO2) fluxes in a northern peatland

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 404, Issue 2-3, Pages 354-360

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2008.03.015

Keywords

Peatland; Methane; Carbon dioxide; Gully; Sphagnum; Eriophorum; Calluna

Funding

  1. Natural Environment Research Council [ceh010023] Funding Source: researchfish

Ask authors/readers for more resources

Peatlands are long term carbon catchments that sink atmospheric carbon dioxide (CO2) and source methane (CH4). in the uplands of the United Kingdom ombrotrophic blanket peatlands commonly exist within Calluna vulgaris (L.) dominated moorland ecosystems. These landscapes contain a range of topographical features that influence local hydrology, climate and plant community composition. In this study we examined the variation in ecosystem CO2 respiration and net CH4 fluxes from typical plant-soil systems in dendritic drainage gullies and adjacent blanket peat during the growing season. Typically, Eriophorum spp., Sphagnum spp. and mixed grasses occupied gullies while C. uulgaris dominated in adjacent blanket peat. Gross CO2 respiration was highest in the areas of Eriophorum spp. (650 +/- 140 Mg CO2 m(-2)h(-1)) compared to those with Sphagnum spp. (338 +/- 49 mg CO2 m(-2)h(-1)), mixed grasses (342 +/- 91 mg CO2 m(-2) h(-1)) and C. vulgaris (174 +/- 63 mg CO2 m(-2) h(-1)). Measurements of the net CH4 flux showed higher fluxes from the Eriophorum spp (2.2 +/- 0.6 mg CH4 m(-2) h(-1)) locations compared to the Sphagnurn spp. (0.6 +/- 0.4 mg CH4 m(-2) h(-1)), mixed grasses (0.1 +/- 0.1 mg CH4 m(-2) h(-1)) and a negligible flux detected from C. uulgaris (0.0 +/- 0.0 mg CH4 m(-2)h(-1)) locations. A GIS approachwas applied to calculate the contribution of gullies to landscape scale greenhouse gas fluxes. Findings from the Moor House National Nature Reserve in the UK showed that although gullies occupied only 9.3% of the total land surface, gullies accounted for 95.8% and 21.6% of the peatland net CH4 and CO2 respiratory fluxes, respectively. The implication of these findings is that the relative contribution of characteristic gully systems need to be considered in estimates of landscape scale peatland greenhouse gas fluxes. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available