4.7 Article

Internal short circuit detection method for battery pack based on circuit topology

Journal

SCIENCE CHINA-TECHNOLOGICAL SCIENCES
Volume 61, Issue 10, Pages 1502-1511

Publisher

SCIENCE PRESS
DOI: 10.1007/s11431-017-9299-3

Keywords

internal short circuit; faulty detection; lithium battery; circuit topology; battery pack safety

Funding

  1. National Natural Science Foundation of China [U1564205]
  2. Ministry of Science and Technology of China [2016YFE0102200]
  3. China Scholarship Council

Ask authors/readers for more resources

Internal short circuit (ISCr) is one of the major obstacles to the improvement of the battery safety. The ISCr may lead to the battery thermal runaway and is hard to be detected in the early stage. In this work, a new ISCr detection method based on the symmetrical loop circuit topology (SLCT) is introduced. The SLCT ensures that every battery has the same priority in the circuit and every battery will contribute the same amount of short-circuit current to the ISCr once the ISCr happens. The ISCr battery could be identified by the combination of the ratio of the short-circuit currents and the sign of the short-circuit currents. The recursive least square method is adopted for the real-time application and the optimized ammeters allocation is derived from the mathematic deduction. The battery pack based on the individual DP (dual polarization) battery model is established to verify the ISCr detection method. The 1-1000 s ISCr (the early stage ISCr) can be effectively detected within 1-125 s. The SLCT provides the possibility of new battery pack designs and new battery management methods. The proposed ISCr detection method shows excellent effectiveness and efficiency on the identification of the ISCr battery in the early stage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available