4.6 Article Proceedings Paper

Phase-field modeling of void evolution and swelling in materials under irradiation

Journal

SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY
Volume 54, Issue 5, Pages 856-865

Publisher

SCIENCE PRESS
DOI: 10.1007/s11433-011-4316-y

Keywords

radiation; void swelling; vacancies; interstitials; phase-field model

Ask authors/readers for more resources

Void swelling is an important phenomenon observed in both nuclear fuels and cladding materials in operating nuclear reactors. In this work we develop a phase-field model to simulate void evolution and void volume change in irradiated materials. Important material processes, including the generation of defects such as vacancies and self-interstitials, their diffusion and annihilation, and void nucleation and evolution, have been taken into account in this model. The thermodynamic and kinetic properties, such as chemical free energy, interfacial energy, vacancy mobility, and annihilation rate of vacancies and interstitials, are expressed as a function of temperature and/or defect concentrations in a general manner. The model allows for parametric studies of critical void nucleus size, void growth kinetics, and void volume fraction evolutions. Our simulations demonstrated that void swelling displays a quasi-bell shape distribution with temperature often observed in experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available