4.6 Article

Analysis of spatial distribution and multi-year trend of the remotely sensed soil moisture on the Tibetan Plateau

Journal

SCIENCE CHINA-EARTH SCIENCES
Volume 56, Issue 12, Pages 2173-2185

Publisher

SCIENCE PRESS
DOI: 10.1007/s11430-013-4700-8

Keywords

Tibetan Plateau; soil moisture; passive microwave; dual-channel method; spatial distribution

Funding

  1. National High-tech R&D Program of China [2012AA12A304]
  2. National Natural Science Foundation of China [40930530]

Ask authors/readers for more resources

Long-term highly accurate surface soil moisture data of TP (Tibetan Plateau) are important to the research of Asian monsoon and global atmospheric circulation. However, due to the sparse in-situ networks, the lack of soil moisture observations has seriously hindered the progress of climate change researches of TP. Based on the Dual-Channel soil moisture retrieval algorithm and the satellite observation data of AMSR-E (Advanced Microwave Scanning Radiometer for EOS), we have produced the surface soil moisture data of TP from 2003 to 2010 and analyzed the seasonal characteristic of the soil moisture spatial distribution and its multi-year changing trend in area of TP. Compared to the in-situ observations, the accuracy of the soil moisture retrieved by the proposed algorithm is evaluated. The evaluation result shows that the new soil moisture product has a better accuracy in the TP region than the official product of AMSR-E. The spatial distribution of the annual mean values of soil moisture and the seasonal variations of the monthly-averaged soil moisture are analyzed. The results show that the soil moisture variations in space and time are consistent with the precipitation distribution and the water vapor transmission path in TP. Based on the new soil moisture product, we also analyzed the spatial distribution of the changing trend of multi-year soil moisture in TP. From the comparisons with the precipitation changing trend obtained from the meteorological observation sites in TP, we found that the spatial pattern of the changing trend of soil moisture coincides with the precipitation as a whole.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available