4.8 Article

Programmable protein circuits in living cells

Journal

SCIENCE
Volume 361, Issue 6408, Pages 1252-1258

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aat5062

Keywords

-

Funding

  1. DARPA [HR0011-17-2-0008]
  2. Gordon and Betty Moore Foundation [GMBF2809]
  3. NIH [T32 GM07616]
  4. Helen Hay Whitney Foundation [F1047]

Ask authors/readers for more resources

Synthetic protein-level circuits could enable engineering of powerful new cellular behaviors. Rational protein circuit design would be facilitated by a composable protein-protein regulation system in which individual protein components can regulate one another to create a variety of different circuit architectures. In this study, we show that engineered viral proteases can function as composable protein components, which can together implement a broad variety of circuit-level functions in mammalian cells. In this system, termed CHOMP (circuits of hacked orthogonal modular proteases), input proteases dock with and cleave target proteases to inhibit their function. These components can be connected to generate regulatory cascades, binary logic gates, and dynamic analog signal-processing functions. To demonstrate the utility of this system, we rationally designed a circuit that induces cell death in response to upstream activators of the Ras oncogene. Because CHOMP circuits can perform complex functions yet be encoded as single transcripts and delivered without genomic integration, they offer a scalable platform to facilitate protein circuit engineering for biotechnological applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available