4.8 Article

Crystalline Inorganic Frameworks with 56-Ring, 64-Ring, and 72-Ring Channels

Journal

SCIENCE
Volume 339, Issue 6121, Pages 811-813

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1232097

Keywords

-

Funding

  1. National Science Council of Taiwan [NSC100-2113-M-007-016-MY3, NSC101-2113-M-033-007-MY3, NSC101-2113-M-008-006-MY3]
  2. NSF [DMR-0846958]

Ask authors/readers for more resources

The development of zeolite-like structures with extra-large pores (>12-membered rings, 12R) has been sporadic and is currently at 30R. In general, templating via molecules leads to crystalline frameworks, whereas the use of organized assemblies that permit much larger pores produces noncrystalline frameworks. Synthetic methods that generate crystallinity from both discrete templates and organized assemblies represent a viable design strategy for developing crystalline porous inorganic frameworks spanning the micro and meso regimes. We show that by integrating templating mechanisms for both zeolites and mesoporous silica in a single system, the channel size for gallium zincophosphites can be systematically tuned from 24R and 28R to 40R, 48R, 56R, 64R, and 72R. Although the materials have low thermal stability and retain their templating agents, single-activator doping of Mn2+ can create white-light photoluminescence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available