4.8 Article

Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes

Journal

SCIENCE
Volume 337, Issue 6090, Pages 64-69

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1219240

Keywords

-

Funding

  1. NHLBI [RC2 HL-103010, RC2 HL-102923, RC2 HL-102924, RC2 HL-102925, RC2 HL-102926]

Ask authors/readers for more resources

As a first step toward understanding how rare variants contribute to risk for complex diseases, we sequenced 15,585 human protein-coding genes to an average median depth of 111x in 2440 individuals of European (n = 1351) and African (n = 1088) ancestry. We identified over 500,000 single-nucleotide variants (SNVs), the majority of which were rare (86% with a minor allele frequency less than 0.5%), previously unknown (82%), and population-specific (82%). On average, 2.3% of the 13,595 SNVs each person carried were predicted to affect protein function of similar to 313 genes per genome, and similar to 95.7% of SNVs predicted to be functionally important were rare. This excess of rare functional variants is due to the combined effects of explosive, recent accelerated population growth and weak purifying selection. Furthermore, we show that large sample sizes will be required to associate rare variants with complex traits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available