4.8 Article

H2S: A Universal Defense Against Antibiotics in Bacteria

Journal

SCIENCE
Volume 334, Issue 6058, Pages 986-990

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1209855

Keywords

-

Funding

  1. NIH
  2. Biogerontology Research Foundation
  3. Dynasty Foundation

Ask authors/readers for more resources

Many prokaryotic species generate hydrogen sulfide (H2S) in their natural environments. However, the biochemistry and physiological role of this gas in nonsulfur bacteria remain largely unknown. Here we demonstrate that inactivation of putative cystathionine beta-synthase, cystathionine gamma-lyase, or 3-mercaptopyruvate sulfurtransferase in Bacillus anthracis, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli suppresses H2S production, rendering these pathogens highly sensitive to a multitude of antibiotics. Exogenous H2S suppresses this effect. Moreover, in bacteria that normally produce H2S and nitric oxide, these two gases act synergistically to sustain growth. The mechanism of gas-mediated antibiotic resistance relies on mitigation of oxidative stress imposed by antibiotics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available