4.6 Article

Synthesis and physicochemical properties of graphene/ZrO2 composite aerogels

Journal

RSC ADVANCES
Volume 5, Issue 16, Pages 11738-11744

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra16024j

Keywords

-

Funding

  1. National Natural Science Foundation of China [21373024]
  2. Innovation Program of the Beijing Institute of Technology
  3. 100 Talents Program of the Chinese Academy of Sciences

Ask authors/readers for more resources

Aerogel materials possess a wide variety of exceptional properties, including a quite low density, high specific surface area, high porosity, etc. Considering that both graphene aerogels and ZrO2 aerogels have advantages and disadvantages respectively, graphene/ZrO2 composite aerogels are prepared, by a facile step, to enable them to have low thermal conductivity and to enhance the electronic interaction between the ZrO2 nanoparticles and graphene sheets. The chemical composition and crystalline structure of the resulting graphene/ZrO2 composite aerogels, as well as the strong interaction between the graphene sheets and the ZrO2 nanoparticles, have been disclosed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and X-ray powder diffraction (XRD). The morphology and hierarchically porous attributes of the resulting graphene/ZrO2 composite aerogels have been investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption tests. The mechanical properties, electrical conductivity, electrochemical properties and thermal conductivity (as well as thermal stability) of the resulting graphene/ZrO2 composite aerogels have also been revealed in this study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available