4.6 Article

A bead-based microfluidic approach to integrated single-cell gene expression analysis by quantitative RT-PCR

Journal

RSC ADVANCES
Volume 5, Issue 7, Pages 4886-4893

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra13356k

Keywords

-

Funding

  1. National Institutes of Health [5U19 AI067773, 8R21GM104204]
  2. National Scholarship from the China Scholarship Council

Ask authors/readers for more resources

Gene expression analysis at the single-cell level is critical to understanding variations among cells in heterogeneous populations. Microfluidic reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is well suited to gene expression assays of single cells. We present a microfluidic approach that integrates all functional steps for RT-qPCR of a single cell, including isolation and lysis of the cell, as well as purification, reverse transcription and quantitative real-time PCR of messenger RNA in the cell lysate. In this approach, all reactions in the multi-step assay of a single lysed cell can be completed on microbeads, thereby simplifying the design, fabrication and operation of the microfluidic device, as well as facilitating the minimization of sample loss or contamination. In the microfluidic device, a single cell is isolated and lysed; mRNA in the cell lysate is then analyzed by RT-qPCR using primers immobilized on microbeads in a single microchamber whose temperature is controlled in closed loop via an integrated heater and temperature sensor. The utility of the approach was demonstrated by the analysis of the effects of the drug (methyl methanesulfonate, MMS) on the induction of the cyclin-dependent kinase inhibitor 1a (CDKN1A) in single human cancer cells (MCF-7), demonstrating the potential of our approach for efficient, integrated single-cell RT-qPCR for gene expression analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available