4.8 Article

Protein Friction Limits Diffusive and Directed Movements of Kinesin Motors on Microtubules

Journal

SCIENCE
Volume 325, Issue 5942, Pages 870-873

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1174923

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (E. Noether Program)
  2. Max Planck Society
  3. Technische Universitat Dresden
  4. Boehringer Ingelheim Fonds

Ask authors/readers for more resources

Friction limits the operation of macroscopic engines and is critical to the performance of micromechanical devices. We report measurements of friction in a biological nanomachine. Using optical tweezers, we characterized the frictional drag force of individual kinesin-8 motor proteins interacting with their microtubule tracks. At low speeds and with no energy source, the frictional drag was related to the diffusion coefficient by the Einstein relation. At higher speeds, the frictional drag force increased nonlinearly, consistent with the motor jumping 8 nanometers between adjacent tubulin dimers along the microtubule, and was asymmetric, reflecting the structural polarity of the microtubule. We argue that these frictional forces arise from breaking bonds between the motor domains and the microtubule, and they limit the speed and efficiency of kinesin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available