4.8 Article

The role of excited-state topology in three-body dissociation of sym-triazine

Journal

SCIENCE
Volume 321, Issue 5890, Pages 826-830

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1157617

Keywords

-

Ask authors/readers for more resources

Molecular fragmentation into three products poses an analytical challenge to theory and experiment alike. We used translational spectroscopy and high-level ab initio calculations to explore the highly debated three-body dissociation of sym-triazine to three hydrogen cyanide molecules. Dissociation was induced by charge exchange between the sym-triazine radical cation and cesium. Calculated state energies and electronic couplings suggest that reduction initially produces a population of sym-triazine partitioned between the 3s Rydberg and pi* <- n electronically excited manifolds. Analysis of the topology of these manifolds, along with momentum correlation in the dissociation products, suggests that a conical intersection of two potential energy surfaces in the 3s Rydberg manifold leads to stepwise dissociation, whereas a four-fold glancing intersection in the pi* <- n manifold leads to a symmetric concerted reaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available