4.6 Article

Confined germanium nanoparticles in an N-doped carbon matrix for high-rate and ultralong-life lithium ion batteries

Journal

RSC ADVANCES
Volume 5, Issue 104, Pages 85256-85263

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra17432e

Keywords

-

Funding

  1. National Basic Research Program of China (973 Program) [2014CB239701]
  2. National Natural Science Foundation of China [21173120, 51372116]
  3. Natural Science Foundation of Jiangsu Province [BK2011030, BK2011740]
  4. Fundamental Research Funds for the Central Universities of NUAA [NP2014403]
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Ask authors/readers for more resources

In this study, a relatively simple and direct method is used to prepare germanium nanoparticles (Ge NPs) embedded in the pore tunnels of an N-doped mesoporous carbon matrix. In the Ge/CMK-3 nanocomposite, the highly ordered porous structure and large pore volume guarantee a sufficient Ge loading and buffer the large volume changes of Ge during the discharge/charge cycles. More specifically, the mesoporous carbon matrix can supply sufficient pathways for Li+ and electron transport to the encapsulated nanometer-sized Ge, as well as restrain the agglomeration and growth of Ge during the crystallization process. Accordingly, the electrode of Ge/CMK-3 attained a capacity as high as 755.7 mA h g(-1) at 500 mA g(-1) after 420 cycles with a capacity retention of 93.3% based on the 11th cycle. The study shows that the electrochemical properties of Ge/CMK-3 are significantly improved compared to that of the bulk Ge anode, and it demonstrates that Ge/CMK-3 could potentially show promise as an anode material for energy storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available