4.4 Article

Aberrant salience network (bilateral insula and anterior cingulate cortex) connectivity during information processing in schizophrenia

Journal

SCHIZOPHRENIA RESEARCH
Volume 123, Issue 2-3, Pages 105-115

Publisher

ELSEVIER
DOI: 10.1016/j.schres.2010.07.020

Keywords

Schizophrenia; Functional network connectivity; Salience network

Categories

Funding

  1. University of Nottingham
  2. Astra Zeneca
  3. Eli Lilly
  4. Bristol Meyers Squibb
  5. Janssen Pharmaceuticals
  6. Medical Research Council [G0601442] Funding Source: researchfish
  7. MRC [G0601442] Funding Source: UKRI

Ask authors/readers for more resources

A salience network, comprising bilateral insula and anterior cingulate cortex (ACC), is thought to play a role in recruiting relevant brain regions for the processing of sensory information. Here, we present a functional network connectivity (FNC) analysis of spatial networks identified during somatosensation, performed to test the hypothesis that salience network connectivity is disturbed during information processing in schizophrenia. 19 medicated individuals with schizophrenia and 19 matched healthy controls participated in a functional magnetic resonance imaging study. 100 Hz vibrotactile stimuli were presented to the right index fingertip while whole-head blood oxygenation level-dependent contrast gradient-echo echo-planar images were acquired. Six spatial components of interest were identified using group independent component analysis: (1) bilateral insula, superior temporal and precentral gyrus (INS); (2) dorsal ACC; (3) left dorsolateral frontal and parietal cortex (left central executive network (LCEN)); (4) right dorsolateral frontal and parietal cortex (RCEN); (5) ventromedial frontal cortex (FDMN); and (6) precuneus, posterior cingulate and angular gyrus (PDMN). Maximal-lagged correlation was examined between all pairwise combinations of components. Significantly reduced FNC was observed in schizophrenia compared to controls between: INS and ACC; INS and FDMN; and LCEN and PDMN. There was no evidence of increased FNC in schizophrenia. Reduced salience network connectivity during information processing in schizophrenia suggests disturbance to the system which effects changes between contextually-relevant functional brain states. This aberrance may provide a mechanistic explanation of several clinical features of the disorder. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available