4.5 Article

Adding strength to endurance training does not enhance aerobic capacity in cyclists

Journal

SCANDINAVIAN JOURNAL OF MEDICINE & SCIENCE IN SPORTS
Volume 25, Issue 4, Pages e353-e359

Publisher

WILEY
DOI: 10.1111/sms.12338

Keywords

Mitochondrial biogenesis; exercise; resistance training; gene expression; PGC-1

Categories

Funding

  1. Swedish National Centre for Research in Sports
  2. Swedish School of Sport and Health Sciences, Stockholm, Sweden

Ask authors/readers for more resources

The molecular signaling of mitochondrial biogenesis is enhanced when resistance exercise is added to a bout of endurance exercise. The purpose of the present study was to examine if this mode of concurrent training translates into increased mitochondrial content and improved endurance performance. Moderately trained cyclists performed 8 weeks (two sessions per week) of endurance training only (E, n=10; 60-min cycling) or endurance training followed by strength training (ES, n=9; 60-min cycling+leg press). Muscle biopsies were obtained before and after the training period and analyzed for enzyme activities and protein content. Only the ES group increased in leg strength (+19%, P<0.01), sprint peak power (+5%, P<0.05), and short-term endurance (+9%, P<0.01). In contrast, only the E group increased in muscle citrate synthase activity (+11%, P=0.06), lactate threshold intensity (+3%, P<0.05), and long-term endurance performance (+4%, P<0.05). Content of mitochondrial proteins and cycling economy was not affected by training. Contrary to our hypothesis, the results demonstrate that concurrent training does not enhance muscle aerobic capacity and endurance performance in cyclists.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available