4.5 Article

Tendon structural adaptations to load exercise are inhibited by anabolic androgenic steroids

Journal

Publisher

WILEY
DOI: 10.1111/sms.12135

Keywords

peritendinous sheath; drugs; mechanical load exercise; morphology; hydroxyproline

Categories

Funding

  1. State of Sao Paulo Funding Agency (FAPESP) [06/50986-6]
  2. FAPESP [2010/19390-5]

Ask authors/readers for more resources

The present study investigated the structural changes in the rat calcaneal tendon (CT), superficial flexor tendon (SFT), and deep flexor tendon (DFT) in response to jump exercises and anabolic androgenic steroids (AAS). Animals were divided into four groups: sedentary, trained, AAS-treated sedentary rats, and AAS-treated trained animals. Training increased the volume density (Vv%) of blood vessels in all regions of the CT and DFT, cell Vv% in the peritendinous sheath of the proximal and distal regions of the SFT and proximal region of DFT, and cell Vv% in the tendon proper of the proximal and distal regions of the SFT and DFT. The combination of AAS and load exercises showed little increased blood vessel Vv% at the proximal region of the CT, intermediate region of the SFT, and all regions of the DFT as opposed to an increase in adipose cell Vv% in the CT proximal region. The AAS reduced the levels of hydroxyproline in the proximal region of the DFT and in the distal region of the STF. In conclusion, exercise promoted benefits to the adaptation of the tendons to overload. These effects were absent when load exercise was combined with AAS. The abusive consumption of AAS contributes to tendon inertness and rigidity, and increases the potential risk of injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available